💼 Case: consider a function $f$ to be a vector, then $f(x)$ is a component of the vector and $x$ plays the role of an index.

🗒️ Note: vector spaces of functions are function spaces $f\in \mathcal F$

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/3cfbf1b7-25ee-44a3-ab04-828ecbb7a51a/inner_product.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/3cfbf1b7-25ee-44a3-ab04-828ecbb7a51a/inner_product.png" width="40px" /> Inner product of function space: $f$ and $g$ are functions defined in the interval $x\in[a, b]$, the inner product is

$$ \lang f|g\rang =\int^b_a\overline{f(x)} g(x)\,\text d \mu(x) $$

where $\text d \mu (x)$ is the measure of a function space.

</aside>

💃 Example: in quantum $\text d\mu(x)=\text dx$ and the inner product of two wavefunction $\psi (x), \phi(x)$

$$ \lang \psi|\phi\rang =\int^b_a\overline{\psi(x)} \phi(x)\,\text dx $$

🗒️ Note: $\text d\mu(x)=\text dx$ is most common choice, but ex: Hermitian: $\text d\mu(x)=e^{-x^2}\text d\mu(x)$

🗒️ Note: for $\lang f|g\rang ^{+\infin}{-\infin} \ne \pm \infin$ then $\lim{\mu(x)\to\pm\infin}(f,g)=0$

Basis functions and completeness

🗒️ Note: for the rest of the notes $\text d\mu(x)=\text dx$

💃 Example: In the case of a wavefunction of a quantum oscillator $u_n =A_nH_n(x)e^{-x^2/2}$, where $H_n(x)$ are Hermite polynomials and $A_n$ is normalisation.

The general wavefunction $\psi=\sum^\infin_{n=1} \alpha_n u_n(x)$ is defined on the basis $u_n(x)$ where $a_n$ is the probability amplitude

💼 Case: consider a set of periodic functions on $[-\pi,\pi]$.

💃 Example: $f,g\in\mathcal F$.

The coordinate representation