The cantor set

💼 Case: consider the tent map

$$ x_{n+1}=\left \{ \begin{matrix} r x_n & \text{if} & x_n \le \frac 12 \\ r(1-x_n) & \text{if} & x_n >\frac 12 \end{matrix} \right . $$

  1. If we consider $r=2$

    All iterates of the map from the interval $[0,1]$ remain bounded within the interval $[0,1]$

image.png

  1. If we consider $r=3$ lets try and find the points within $[0,1]$ do not escape to $-\infin$

image.png

image.png

image.png


We can construct the cantor set as following

  1. Remove 1 piece of length $\frac 13$
  2. Remove 2 pieces of length $\frac 13 ^2$
  3. Remove 3 pieces of length $\frac 12^3$
  4. At step $n$ we remove $2^{n-1}$ of length $\frac 13^n$

In total what we have removed is

$$ \small\begin{aligned} \sum^\infin_{n=1}\frac{2^{n-1}}{3^n}=\frac 13 \sum^\infin_{n=0}\left ( \frac{2}{3}\right )^n = \frac 13 \frac{1}{1-\frac 23}=1 \end{aligned} $$

After $n$ steps we have $2^n$ pieces of length $\frac 13^n$ so that the length $\frac 23^n \to 0$ as $n\to \infin$

image.png

Properties:

Von Koch curve

If we look at the length of the curve we have

$$ \begin{aligned} L_1&=\frac 43 L_0 \\ L_2&=\left ( \frac{4}{3} \right )^2 L_0 \\ &\; \; \vdots \\ L_\infin&=\infin

\end{aligned} $$

Total length of the Von Koch curve is infinite

The arclength between any two points in Euclidian space of the curve is infinite

So we cant express the positions of points using a 1D grid but 2D is redundant so it has non-integer dimensions between 1 and 2

image.png

Self similarity

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/949b372f-a131-4642-a322-a16a5b775eec/Self_similarity.gif" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/949b372f-a131-4642-a322-a16a5b775eec/Self_similarity.gif" width="40px" />

Self similarity: Two objects are similar if they have the same shape, regardless of their size

</aside>

Similarity transformations:


⚽ Goal: lets try to remove this abstract $g(\lambda)$ function