Definition:

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/f18ba8f6-a5aa-498e-9d58-14529fecbaaf/dirac_delta.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/f18ba8f6-a5aa-498e-9d58-14529fecbaaf/dirac_delta.png" width="40px" /> Dirac delta function $\delta(x)$:

πŸ›οΈ Definition:

$$ \begin{aligned} \delta(x)&=\lim_{k\to\infin}k\Pi(kx) \\ \text{or} \quad \delta(x)&=\lim_{k\to\infin}k\Lambda(kx) \\ \text{or} \quad \delta(x)&=\lim_{k\to\infin}\sqrt{\frac{k}{\pi}}\,e^{-kx^2} \\ \text{or} \quad \delta(x)&=\lim_{k\to\infin}\frac{k}{\pi}\frac{\sin(kx)}{kx}

\end{aligned} $$

Untitled

πŸ‰ Properties:

$$ \begin{aligned} \int^{+\infin}{-\infin}\delta(x)\,\text dx&=1 \\ \int^{+\infin}{-\infin}\delta(x-x_0)f(x)\,\text dx&=f(x_0) \\

\end{aligned} $$

</aside>

Let’s link it back to Fourier integrals

<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/242729b1-7098-49b8-af86-af4b17a2104f/Fourier_transform_pair.png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/369dfa6b-d4d9-4cf2-a446-e369553b6347/242729b1-7098-49b8-af86-af4b17a2104f/Fourier_transform_pair.png" width="40px" /> Fourier transform pair:

Physical:

$$ \begin{aligned} f(x)&=\frac{1}{2\pi}\int^\infin_{-\infin}F(k)e^{-ikx}\,\text dk \\ F(k)&=\int^\infin_{-\infin}f(x)e^{ikx}\,\text dx

\end{aligned} $$

Mathematics:

$$ \begin{aligned} f(x)&=\frac{1}{\sqrt{2\pi}}\int^\infin_{-\infin}F(k)e^{-ikx}\,\text dk \\ F(k)&=\frac{1}{\sqrt{2\pi}}\int^\infin_{-\infin}f(x)e^{ikx}\,\text dx

\end{aligned} $$

</aside>

Lets try and prove the following:

$$ \sum^\infin_{n=-\infin}\delta(x-2n\pi)=\frac{1}{2\pi}\sum^\infin_{n=-\infin}e^{inx} $$

🫠 List of properties of the $\delta(x)$ function

$$ \begin{aligned} \delta(x)&=\delta(-x) \\ x\delta(x)&=0 \\ \frac{\text d}{\text dx}\delta(x)&=-\frac{\text d}{\text dx}\delta(-x)\\ x\frac{\text d}{\text dx}\delta(x)&=-\delta(x) \\ \int^\infin_{-\infin} \delta(x-a)f(x)\,\text dx&=f(a) \\ \int^\infin_{-\infin} \delta'(x-a)f(x)\,\text dx&=f'(a) \\ \delta(ax)&=\frac{1}{|a|}\delta(x) \\ \delta(g(x) &= \sum_i \frac{1}{|g'(x_i)|}\delta(x-x_i) \\ \delta(x^2-a^2) &= \frac{1}{2a}\left [ \delta (x-a)+\delta(x+a) \right ] \\ \delta((x-a)(x-b)) &= \frac{1}{|a-b|}[\delta(x-a)+\delta(x-b)]

\end{aligned} $$

where $a$ and $b$ are constants $g(x_i)=0$ and $g'(x_i)\ne0$.

πŸ—’οΈ Note: the Dirac delta function is even

Examples of Fourier transforms

🎩 Example 1: Find the Fourier transform of the rectangular function which is bound by $\pm a$

Untitled