$$ P=\frac{W}{\Delta t} \; {\color{#979A9B}\text{ and }} \; W=F_D \Delta x \; {\color{#979A9B}\text{ so }} \Rightarrow \; P=F_D\frac{\Delta x}{\Delta t} $$
Since $F_D$ is the damping force and ${\Delta x}/\Delta t$ is the infinitesimal velocity then:
$$ P=\mathrm{Damping \, force} \, \times \, \mathrm{Velocity} $$
Velocity can be found by using $x(t) =A(\omega) \cos(\omega t - \delta)$
$$ \begin{aligned} v(t)= \frac{dx}{dt} &= - A(\omega) \omega \sin (\omega t - \delta)\\ &= - v_0 ( \omega) \sin ( \omega t - \delta) \end{aligned} $$
$$ P(t)= b v(t) \cdot v(t) = b v_0^2 (\omega) \sin^2 (\omega t - \delta) $$
$$ \bar{P}(\omega) = \frac{1}{T} \int_{t_0}^{t_0 +T} b v_0^2 (\omega)\, \sin^2(\omega t - \delta)\, dt $$
$$ \begin{aligned} \bar{P}(\omega) &= \frac{1}{2} b v_0^2(\omega)\\ &= \frac{\omega^2 F_0^2 \gamma}{2 m [(\omega^2 - \omega_0^2)^2 + \omega^2 \gamma^2]} \end{aligned} $$
Plot of the power resonance curve
$$ \hat{P}(\omega) = \frac{F_0^2}{2 m \gamma \left(\frac{4 \Delta \omega^2}{\gamma^2} +1 \right )} $$
where $\Delta\omega=\omega-\omega_0$