💼 Case: consider fermions scattering with some exchange particle $X$
🗒️ Note: Feynman diagrams can be used to find the probability of a decay(the scattering amplitude)
💃 Example: for EM the coupling strength is $g_\text{EM}\equiv \text{electric charge} \,(e)$ and thus $\alpha_\text{EM}\sim \frac{1}{137}$ is the fine structure constant
💃 Example: The Feynman Diagram for $e^- \mu^- \to e^- \mu^-$ scattering via the $\rm EM$
💡 Tips:
Charge conservation (all types of charges not just electric)
$$ \left [ \sum_i Q_i \right ]^\text{initial}=\left [ \sum_{i}Q_i \right ]^\text{final} $$
Generational lepton number conservation
$$ L_e^\text{initial} =L_e^\text{final} $$
where $L_e=N(e^-,\nu_e)-N(e^+,\overline \nu_e)$ note that the 3 generations $L_\mu$ and $L_\tau$ also conserved
Baryon number conservation
$$ B^\text{initial}=B^\text{final} $$
where $B=\frac{1}{3} [N(q)-N(\overline q)]$ here $q$ is any type of quark
We done represent time orderings:
❌ No good
❌ No good
✅ Fantastic
💼 Case: if we consider the process $e^- \mu^- \to e^- \mu ^-$