🗒️ Note: The polarization goes over to magnetization and the dot products become cross products
The equations of magnetostatics are $\vec \nabla \cdot \vec B =0, \; \vec \nabla \times \vec B=\mu_0 \vec j$.
For dielectrics we will split the current density $\vec j$ into contributions due to bound and free currents
$$ \vec j=\vec j_\text{bound}+\vec j_\text{free} $$
and Amperes law now becomes
$$ \vec \nabla \times \vec B=\mu_0 (\vec j_\text{bound}+\vec j_\text{free})=\mu_0( \vec \nabla \times \vec M +\vec j_\text{free}) $$
we now define the magnetic intensity vector
$$ \vec H \equiv \frac{1}{\mu_0} \vec B - \vec M $$
so that Amperes laws reads
$$ \vec \nabla \times \vec H =\vec j_\text{free} $$
where $\vec H$ is in [$\rm{Am}^{-1}$].
The integral form of Amperes law becomes
$$ \oint_\ell \vec H \cdot \text d \vec l=I_\text{free} $$
🗒️ Note: the free current $I_\text{free}$ is the parameter we can control from outisde the material, just as $\rho_\text{free}$ was in the case of the dielectrics
In diamagnetic and paramagnetic substances the magnetization is linked linearly to the magnetic field via
$$ M=\frac{\chi_B}{\mu_0} \vec B $$
which we can sub into the definition of the magnetic intensity vector to get
$$ \vec H=\frac{1-\chi_B}{\mu_0}\vec B $$
The magnetic energy becomes
$$ U=\frac 12 \int \vec B \cdot \vec H \,\text d V $$
💼 Case: Consider the solenoid of length $\ell$
Ampere’s law
$$ \oint \vec H \cdot \text d\vec \ell =H\ell =N \ell I $$
Hence
$$ H=NI $$
Using $\vec H=\frac{1-\chi_B}{\mu_0}\vec B$ we get
$$ \mathcal E =-\frac{\mu_) N^2 \pi r^2 \ell}{1-\chi_B} \frac{\text dI}{\text dt} $$
and the inductance
$$ \mathcal L=-\frac{\mathcal E}{\dot I}=\frac{\mathcal L_\text{vac}}{1-\chi_B} $$
Which makes us the define the relative permeability as
$$ \mu_r\equiv \frac{1}{1-\chi_B} $$
The magnetic field and magnetic intensity vectors are thus linked via
$$ \vec B= \mu_r \mu_0 \vec H $$
Consider the boundary between two regions having relative permeability $\mu_r^{(1)},\mu_r^{(2)}$ with no free currents on the boundary. Hence one can find that
$$ \begin{aligned} \text{Ampere:}\quad \oint\vec H \cdot \text d \vec \ell &=0 \quad \Rightarrow \quad H_\parallel \text{ continuous} \\ \text{No monopoles:}\quad \int\vec B \cdot \text d \vec A &=0 \quad \Rightarrow \quad B_\perp \text{ continuous}
\end{aligned} $$
When deriving paramagnetism we assumed that the intrinsic dipole moments didn’t interact with each other which enabled us to write down
$$ \vec M=\frac{nm^2_\text{intrinsic}}{3k_BT} \vec B_\text{ext} $$
These interactions create domains of size 0.1-1mm where in a given domain all magnetic moments have the same alignment. This is called ferromagnetism.