<aside> <img src="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/9826592e-96d9-4c6d-bb75-e9b1040eb0bc/Clausius_inequality.png" alt="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/9826592e-96d9-4c6d-bb75-e9b1040eb0bc/Clausius_inequality.png" width="40px" /> Clausius inequality states that over a cycle:

$$ \oint\frac{\text{d}\hspace*{-0.16em}\bar{}\hspace*{0.2em} Q}{T}\le0 $$

</aside>

<aside> <img src="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/c88543a4-dc47-4576-bbde-0c7cff90933c/Entropy.png" alt="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/c88543a4-dc47-4576-bbde-0c7cff90933c/Entropy.png" width="40px" /> Entropy is defined as:

$$ \text dS=\frac{\text{d}\hspace*{-0.16em}\bar{}\hspace*{0.2em} Q}{T} $$

</aside>

$$ S(A)=\int^A_O\frac{\text{d}\hspace*{-0.16em}\bar{}\hspace*{0.2em} Q_\text{rev}}{T} $$

Where $O$ is an arbitrary point

$$ \Delta S=S(B)-S(A)=\int^B_A\frac{\text{d}\hspace*{-0.16em}\bar{}\hspace*{0.2em} Q_\text{rev}}{T}\ge 0 $$

Reversible vs Irreversible

Consider free expansion against reversible isothermal expansion with the same initial and final equilibrium states

$$ \text{d}\hspace*{-0.16em}\bar{}\hspace*{0.2em} Q_\text{irrev}+\text{d}\hspace*{-0.16em}\bar{}\hspace*{0.2em} W_\text{irrev}=\text{d}\hspace*{-0.16em}\bar{}\hspace*{0.2em} Q_\text{rev}+\text{d}\hspace*{-0.16em}\bar{}\hspace*{0.2em} W_\text{rev} $$

We get the following relations:

$$ \text{d}\hspace*{-0.16em}\bar{}\hspace*{0.2em} W_\text{irrev} > \text{d}\hspace*{-0.16em}\bar{}\hspace*{0.2em} W_\text{rev} \quad ; \quad \text{d}\hspace*{-0.16em}\bar{}\hspace*{0.2em} Q_\text{irrev}<\text{d}\hspace*{-0.16em}\bar{}\hspace*{0.2em} Q_\text{rev} $$

Isolated systems

The entropy of an isolated system can only increase or stay the same

An isolated system at equilibrium must be in the state of maximum entropy

Entropy and temperature

$$ ⛵\; C_V=T\left(\frac{\partial S}{\partial T}\right)_V \qquad ; \qquad 🌋 \; C_p=T\left(\frac{\partial S}{\partial T}\right)_p $$

Definitions

<aside> <img src="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/498198de-9755-4079-9e56-ecc7ae2493fe/Isentropic.png" alt="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/498198de-9755-4079-9e56-ecc7ae2493fe/Isentropic.png" width="40px" /> Isentropic refers to a process in which there is no change in entropy $\text dS=0$

</aside>