Time independent Maxwell’s equations

$$ \begin{matrix} \vec \nabla \cdot \vec E=\frac{\rho}{\epsilon_0} & \vec \nabla \times \vec E = 0 \\ \vec \nabla \cdot \vec B=0 & \vec \nabla \times \vec B = \mu_0 \vec j \end{matrix} $$

🗒️ Notes:

In integral form the time independent Maxwell’s equations become:

$$ \begin{aligned} \oint_S \vec E \cot \text d \vec S &= \frac{Q}{\epsilon_0} \\ \oint_L \vec B \cdot \text d \vec l &= \mu_0 \sum I_i \end{aligned} \qquad \begin{aligned} \oint_L \vec E \cdot \text d\vec l &=0 \\ \oint_S \vec B \cdot \text d \vec S&=0

\end{aligned} $$

🗒️ Notes:

Rearranging the time independent Maxwell equations

Electrostatics

Using the relation we found above $\nabla^2 \phi = -{\rho}/{\epsilon_0}$ we can find

$$ \phi(\vec r)=\frac{1}{4\pi\epsilon_0}\int_V\text dV'\frac{\rho(\vec r')}{|\vec r- \vec r'|} $$