Facts about charges:
- 2 types of electrical charge: positive and negative
- Charge is conserved
- Charge is quantised, electron charge: $1.60\times10^{-19}$ C
- Charge is Lorentz invariant: speed doesn't affect the charge
$$ \vec{F}=\frac{q_1q_2}{4\pi\epsilon_0r^2}\hat{r} $$
Definition: Rubbing or touching two objects can transfer electrons from one to the other (this phenomena is the triboelectric effect) → static electricity can cause damage to electronics
<aside> <img src="https://em-content.zobj.net/source/microsoft-teams/337/scroll_1f4dc.png" alt="https://em-content.zobj.net/source/microsoft-teams/337/scroll_1f4dc.png" width="40px" /> Rules: Negative charges repeal and opposite charges attract
</aside>
<aside> <img src="https://em-content.zobj.net/source/microsoft-teams/337/battery_1f50b.png" alt="https://em-content.zobj.net/source/microsoft-teams/337/battery_1f50b.png" width="40px" /> Induction: placing a charged particle next to a conductor which is connected to the earth will attract the opposite charge, then if the connection is severed the opposite charges will remain in the conductor, this is induction charging
</aside>
<aside> <img src="https://em-content.zobj.net/source/microsoft-teams/337/coin_1fa99.png" alt="https://em-content.zobj.net/source/microsoft-teams/337/coin_1fa99.png" width="40px" /> Polarisation: placing a charge next to an isolator will cause the bound charges to separate and create a dipole.
</aside>
<aside> <img src="https://em-content.zobj.net/source/microsoft-teams/337/sheaf-of-rice_1f33e.png" alt="https://em-content.zobj.net/source/microsoft-teams/337/sheaf-of-rice_1f33e.png" width="40px" /> Field: physical quantity tat has a value at all points in space and time within a system
<aside> <img src="https://em-content.zobj.net/source/microsoft-teams/337/framed-picture_1f5bc-fe0f.png" alt="https://em-content.zobj.net/source/microsoft-teams/337/framed-picture_1f5bc-fe0f.png" width="40px" /> Electric field: if a test charge $q_{test}$ experiences a force $\vec{F}_E$ due to an electric field $\vec{E}$ then $\vec{E}=\frac{\vec{F}E}{q{test}}=\frac{q}{4\pi\epsilon_0r^2}\hat{r}$
</aside>