The universe is Homogenous (looks the same from every location) and Isotropic (looks the same in every direction)
Olbers paradox: if the universe was infinite the sky would be infinitely bright, therefore the universe is finite
$$ v=H_0r $$
$$ z=\frac vc=\frac{\Delta\lambda}\lambda=\frac{\lambda_\text{obs}-\lambda_{rest}}{\lambda_\text{rest}} $$
$$ t_\text{H}=\frac rv=\frac1{H_0}\approx10^{10} \,\text{yr} $$
$$ r_\text{H}=ct_\text{H}\approx 4\,\text{Gpc} $$
$$ \rho_\text{cr}=\frac{3H^2_0}{8\pi G} $$
The above equation proposes 3 possible future,
$$ \Omega_0=\frac\rho{\rho_\text{cr}} $$
Curvature constnant $k$
- $k$<0 for an open universe
- $k$=0 for a critical universe
- $k$>0 for a closed universe
$$ a=\frac{r(t)}{r(t_0)}=\frac1{1+z} $$