$$ \iiint f(x,y,z)\, \text dz\, \text dy\, \text dx = \int \text dz \left[\int \text dy \left( \int f(x,y,z)\, \text dx\right) \right] $$
✏️ Diagram:
🔍 We can see the relevant area in orange
🐍 $x$ limits are from $1 \to 3$ and $y$ limits are from $(x-2)^2+2\to3$
🔁 Here it obvious to integrate first by $y$ then $x$
🕵️ The limits follow the rules
✅ :
$$ \begin{aligned} &=\int_1^3 \text dx \left(\int^3_{(x-2)^2+2}x \,\text dy \right) \\ &=\int^3_1 -x^3+4x^2-3x\,\text dx \\ &=\frac{8}{3} \end{aligned} $$
<aside> <img src="https://em-content.zobj.net/source/microsoft-teams/337/hollow-red-circle_2b55.png" alt="https://em-content.zobj.net/source/microsoft-teams/337/hollow-red-circle_2b55.png" width="40px" /> Plane polar coordinates
</aside>
the values are represented by the respective colored lines
the values are represented by the respective colored lines
$$ \begin{aligned}x &= r\cos\theta \\y &= r\sin\theta \\\text dA &= r\, \text dr \,\text d\theta\end{aligned} $$
<aside> <img src="https://em-content.zobj.net/source/microsoft-teams/337/test-tube_1f9ea.png" alt="https://em-content.zobj.net/source/microsoft-teams/337/test-tube_1f9ea.png" width="40px" /> Cylindrical coordinates
</aside>
$$ \begin{aligned}x &= r\cos\theta \\y &= r\sin\theta \\ z &= z \end{aligned} $$
For curved surface: $\text dA=r \, \text d \theta \, \text dz$
For top surface: $\text dA=r \, \text d \theta \, \text dr$
For volume: $\text dV=r \, \text dr \, \text d \theta \, \text dz$
<aside> <img src="https://em-content.zobj.net/source/microsoft-teams/337/falafel_1f9c6.png" alt="https://em-content.zobj.net/source/microsoft-teams/337/falafel_1f9c6.png" width="40px" /> Spherical polar coordinates
</aside>
https://www.math3d.org/VqP8XpUQp
$$ \begin{aligned}x &= r\sin\theta\cos\phi \\y &= r\sin\theta\sin\phi \\z &= r\cos\theta \\ \text dA&=r^2\sin\theta\, \text d\theta\, \text d\phi \\ \text dV&=r^2\sin\theta\, \text dr\, \text d\theta \,\text d\phi \end{aligned} $$
Example: Volume of a sphere
$$ \int^{2\pi}_0 \text d\phi \int^pi_0 \sin \theta \, \text d\theta \int^R_0 r^2\, \text dr = \frac{4}{3}\pi R^3 $$