๐ŸŒน Conservative forces

Properties:

$$ \vec \nabla \times \vec F = 0 $$

๐Ÿฅ€ Potential energy and work

$$ \vec{F} = -\vec{\nabla} E_p $$

$$ W = \int_C \vec{F} \cdot \boldsymbol{dl} = \int_{A}^{B} -\boldsymbol{\nabla} V \cdot \text d\vec{l} = -\int_{A}^{B} \text dV = V_A - V_B $$

<aside> <img src="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/724d410b-8e31-408d-a9ac-ef874d495ce0/Central_forces.png" alt="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/724d410b-8e31-408d-a9ac-ef874d495ce0/Central_forces.png" width="40px" /> Central forces: forces which depend only on $r$ and are in the $\hat r$ direction

$$ \vec F=f(r) \,\hat r $$

</aside>

$$ E_p=-\int F_x\,\text dx=-\int F_y\,\text dy=-\int F_z\,\text dz $$

๐ŸŒบ Fourier Series

Dirichlet Conditions for Fourier series

$$ f=\frac{1}{T} \qquad ; \qquad \omega=2\pi f=\frac{2\pi}{T} $$

๐Ÿ—’๏ธ A function is period with period $T$ if:

$$ \int_0^T P(t)\,\text dt = \int_{t_0}^{T+t_0} P(t)\,\text dt $$

<aside> <img src="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/8d9264bd-8305-4011-9db1-3a2dd1c6198a/orthogonal_function.png" alt="https://s3-us-west-2.amazonaws.com/secure.notion-static.com/8d9264bd-8305-4011-9db1-3a2dd1c6198a/orthogonal_function.png" width="40px" /> Orthogonal function: $f(t)$ and $g(t)$ are orthogonal if

$$ \int_0^T f^*(t) g(t)\,\text dt = 0 $$

</aside>

๐ŸŒผ Orthogonality relations of Sines and Cosine