💼 Case: Consider the integral

$$ I=\int^\infin_{-\infin} \frac{1}{x^2+a^2} \,\text dx =\lim_{R\to \infin} \int^R_{-R} \frac{1}{x^2+a^2}\,\text dx $$

for $$ real $a>0$

Fourier Integrals

💼 Case: consider an integral of the form where $k>0$, $k\in \R$ and $\lim_{z\to\infin} f(z) =0$

$$ I=\int^\infin_{-\infin} f(x) e^{ikx} \, \text dx $$

Also assume $f(z)$ is meromorphic in the upper half plane, its only singularities are isolates poles

💃 Example: Take $f(x)=\frac 1{1+x^2}$

Integrand containing trig functions

💼 Case: consider

$$ I=\int^{2\pi}_0 \frac{1}{5+4\cos(\theta)}\,\text d\theta $$

To convert it to complex we use

$$ \boxed{z=e^{i\theta} \quad \text dz=ie^{i\theta}\,\text d\theta \quad \text d\theta =\frac{\text dz}{iz} \qquad \cos\theta=\frac 12 \left ( z + \frac{1}{z} \right ) \quad \sin\theta=\frac 1 {2i} \left ( z-\frac{1}{z} \right )} $$

Applying these we get

$$ \begin{aligned} I=\oint_C \frac{1}{5+2(z+\frac 1z)}\frac{\text dz}{iz}=\frac{1}{2i} \oint_C \frac{1}{(z+\frac{1}{2})(z+2)}\,\text dz

\end{aligned} $$