$$ W=q\int \vec{E}\cdot\text d\vec{l} $$
$$ \oint_C \vec E \cdot \text d \vec l =0 $$
$$ \phi(r)=-\int^r_\infin \vec E \cdot \text d \vec l $$
$$ \Delta\phi=\phi(\vec r_B)-\phi(\vec r_A)=-\int^{r_A}_{r_B} \vec E \cdot \text d \vec l $$
<aside> <img src="https://em-content.zobj.net/source/microsoft-teams/337/puzzle-piece_1f9e9.png" alt="https://em-content.zobj.net/source/microsoft-teams/337/puzzle-piece_1f9e9.png" width="40px" /> Equipotential surfaces: Points in space that have the same $\phi$ are called equipotential surfaces
No work is done moving a charge along an equipotential
E-fields are normal to equipotential
The closer equipotential are to each other the stronger the E-field </aside>
The potential formula can be re-written to get the E-field:
$$ \vec E=-\vec \Delta \phi=-\left( \frac{\partial\phi}{\partial x}\hat{i}+\frac{\partial\phi}{\partial y}\hat{j}+\frac{\partial\phi}{\partial z}\hat{k} \right) $$