$$ W=q\int \vec{E}\cdot\text d\vec{l} $$

$$ \oint_C \vec E \cdot \text d \vec l =0 $$

work and electric potential.png

The scalar potential field

$$ \phi(r)=-\int^r_\infin \vec E \cdot \text d \vec l $$

$$ \Delta\phi=\phi(\vec r_B)-\phi(\vec r_A)=-\int^{r_A}_{r_B} \vec E \cdot \text d \vec l $$

<aside> <img src="https://em-content.zobj.net/source/microsoft-teams/337/puzzle-piece_1f9e9.png" alt="https://em-content.zobj.net/source/microsoft-teams/337/puzzle-piece_1f9e9.png" width="40px" /> Equipotential surfaces: Points in space that have the same $\phi$ are called equipotential surfaces

$$ \vec E=-\vec \Delta \phi=-\left( \frac{\partial\phi}{\partial x}\hat{i}+\frac{\partial\phi}{\partial y}\hat{j}+\frac{\partial\phi}{\partial z}\hat{k} \right) $$