Parameters of light:

  1. Frequency of the wave ($f$)
  2. Wavelength ($\lambda$)
  3. velocity ($c$)

$$ \begin{aligned} c&=\frac{\lambda}{t}=\lambda f\\ E\,(\text{J})&=hf=\frac{hc}{\lambda} \end{aligned} $$

Untitled

Blackbody radiation

<aside> <img src="https://emojipedia-us.s3.amazonaws.com/source/microsoft-teams/337/star_2b50.png" alt="https://emojipedia-us.s3.amazonaws.com/source/microsoft-teams/337/star_2b50.png" width="40px" /> A Blackbody: is an object that absorbs and emits photons with perfect efficiency.

</aside>

Untitled

$$ B_\lambda(T)=\frac{2hc^2}{\lambda^5}\frac{1}{e^{hc/kT\lambda}-1} $$

$$ \bullet\;\lambda_{peak}=\frac{2.897\times10^{-3}}{T}\,\text{m}\qquad\quad\; $$

https://www.desmos.com/calculator/uhbfdwutcw

Stefan-Boltzmann law:

$$ \begin{aligned} F&=\sigma T^4\, \text{(Wm}^{-2}) \\ L&=4\pi R^2\sigma T^4\,(\text{W}) \\ E&=L\times t \,(\text{J}) \end{aligned} $$

The effective temperature of a star

$$ T_{\text{eff}}=\left(\frac{L}{\sigma4\pi R^2}\right)^{\frac{1}{4}} $$