Parameters of light:
- Frequency of the wave ($f$)
- Wavelength ($\lambda$)
- velocity ($c$)
$$ \begin{aligned} c&=\frac{\lambda}{t}=\lambda f\\ E\,(\text{J})&=hf=\frac{hc}{\lambda} \end{aligned} $$
<aside> <img src="https://emojipedia-us.s3.amazonaws.com/source/microsoft-teams/337/star_2b50.png" alt="https://emojipedia-us.s3.amazonaws.com/source/microsoft-teams/337/star_2b50.png" width="40px" /> A Blackbody: is an object that absorbs and emits photons with perfect efficiency.
</aside>
$$ B_\lambda(T)=\frac{2hc^2}{\lambda^5}\frac{1}{e^{hc/kT\lambda}-1} $$
The energy emitted per s per m$^2$ is $B$ it is in Wm$^{-3}$, so it is the flux per meter of wavelength
$h$ is planks constant
$c$ is the speed of light
$k$ is the Boltzmann constant
$T$ is the temperature of the blackbody
$$ \bullet\;\lambda_{peak}=\frac{2.897\times10^{-3}}{T}\,\text{m}\qquad\quad\; $$
https://www.desmos.com/calculator/uhbfdwutcw
$$ \begin{aligned} F&=\sigma T^4\, \text{(Wm}^{-2}) \\ L&=4\pi R^2\sigma T^4\,(\text{W}) \\ E&=L\times t \,(\text{J}) \end{aligned} $$
$\sigma$ is the Stefan-Boltzmann constant
$F$ is the flux (Wm$^{-2}$)
$L$ is the luminosity (W)
$E$ is the energy (J)
$R$ is the radius of the star (m)
$T$ is the temperature in (K)
$$ T_{\text{eff}}=\left(\frac{L}{\sigma4\pi R^2}\right)^{\frac{1}{4}} $$