Bessel’s equation is given by
$$ x^2 \frac{\text d^2 y}{\text dx^2}+x\frac{\text dy}{\text dx}+(x^2-m^2)y=0 $$
subject to boundary conditions $y$ is finite at $x=0$
We are solving using it using the method of Frobenius which uses a series solution with a leading factor of $x^s$ to account for non-constant behaviour at small $x$
$$ y(x)=x^s\sum^\infin_{n=0}a_n x^n $$
🗒️ Note: $s$ could be $s<0$ and could be complex in general
Take the derivative
$$ \begin{aligned} x\frac{\text dy}{\text dx}&=\sum^\infin_{n=0}a_n(n+s)x^{n+s} \\ x^2 \frac{\text d^2 y}{\text dx^2}&=\sum^\infin_{n=0} a_n(n+s)(n+s-1)x^{n+s} \\ (x^2-m^2)y&=\sum^\infin_{n=0}a_n x^{n+s+2}-m^2 \sum^\infin_{n=0} a_n x^{n+s} \end{aligned} $$
To help equating coefficients we write this first term on the right hand side as
$$ \sum_{n=2}^\infin a_{n-2}x^{n+s} $$
Subbing in we get
$$ \begin{aligned} &\sum^\infin_{n=0} a_n(n+s)(n+s-1)x^{n+s}+\sum^\infin_{n=0} a_n(n+s)x^{n+s} \\&+\sum^\infin_{n=2}a_{n-2} x^{n+s}-m^2 \sum^\infin_{n=0} a_n x^{n+s}=0 \end{aligned} $$
We can now equate coefficients
when $n=0$
$$ \begin{aligned} a_0 s(s-1)+a_0s-m^2a_0&=0 \\ a_0(s^2-m^2)&=0 \\ \Rightarrow \qquad s&=\pm m
\end{aligned} $$
when $n=1$
$$ \begin{aligned} a_1s(s+1)+(1+s)a_1-m^2a_1&=0 \\ \left [ (s+1)^2-m^2\right ]a_1&=0 \\ a_1&=0 \end{aligned} $$
when $n\ge2$
$$ \begin{aligned} [(n+s)(n+s-1)+(n+s)-m^2]a_n+a_{n-2}=0 \\ \left [ (n+s)^2-m^2 \right ]a_n+a_{n-2}=0
\end{aligned} $$
For solutions that are regular at the origin we take $s=+m>0$ we have
$$ \begin{aligned} a_2&=-\frac{a_0}{(m+2)^2-m^2} \\ a_4&=-\frac{a_2}{(m+4)^2-m^2} \\ \vdots\;&\qquad \qquad \quad \vdots
\end{aligned} $$
We can expand these solutions as
$$ \begin{aligned} a_2&= -\frac{a_0}{2^2(1+m)}=-\frac{a_0}{2(2+2m)} \\ a_4&=-\frac{a_2}{2^3(2+m)}=\frac{a_0}{2.4(2+2m)(4+2m)}=\frac{a_0}{2^{2.2}2!(1+m)(2+m)} \end{aligned} $$
We can also evaluate $a_6$ by a similar procedure
$$ a_6=-\frac{a_0}{2^{2.3}3!(1+m)(2+m)(3+m)} $$
We also have $a_n=0$ is $n=$ odd. The series converges for all values $x$ since the ratio of the $(n+2)$th to the $n$th term in the series is
$$ \left | \frac{a_{n+2}x^{n+2}}{a_nx^n} \right |=\frac{x^2}{(n+2+m)^2-m^2} $$
which vanishes as $n\to\infin$ for all $x$
For positive integer values of $m$ we can write the expression in terms of factorials
$$ \begin{aligned} &=\frac{1}{(1+m)(2+m)\ldots(j+m)}\\ &=\frac{1.2.3\ldots (m-1)m}{1.2.3\ldots (m-1)(m)(1+m)\ldots (m+j)}\\&=\frac{m!}{(m+j)!} \end{aligned} $$
Thus in general for integer $m$ we have
$$ a_{2j}=\frac{(-1)^ja_0 m!}{2^{2j}j!(m+j)!} $$
$m=0,1,2,\ldots$
🗒️ Note: this can be generalised to non-integer $m$ using the gamma function
This gives a series of coefficients in the original power series and a solution to Bessel’s equation
$$ \begin{aligned} y(x)&=\sum^\infin_{n=0}a_nx^{m+n} \\ &=\sum^\infin_{j=0}a_{2j}x^{m+2j} \\ &=\sum^\infin_{j=0}\frac{(-1)^ja_0 m!}{2^{2j}j!(m+j)!}x^{m+2j} \\ &=a_0m! 2^m\sum^\infin_{j=0}\frac{(-1)^j}{2^{2j}2^mj!(m+j)!}x^{m+2j} \\ &=a_0m! 2^m\sum^\infin_{j=0}\frac{(-1)^j}{j!(m+j)!}\left ( \frac x2 \right )^{m+2j}
\end{aligned} $$
If $m$ is an integer it is customary to write
$$ a_0=\frac{1}{2^mm!} $$
Thus we have
$$ y(x)=a_02^mm! J_m(x) $$
where
$$ J_m(x)=\sum^\infin_{j=0}(-1)^j\frac{1}{j!(m+j)!}\left ( \frac x2 \right ) ^{m+2j} $$
This series solution corresponds to Bessel’s equation of the first kind
🗒️ Notes:
$y(x)\propto J_m(x)$
All others are zero at the origin $x=0$
$J_0(0)=1$
The orthogonality relation for these Bessel functions
$$ \int^\ell_0xJ_p\left ( \frac{\chi_n}{\ell}x\right ) J_p\left ( \frac{\chi_m}{\ell}x\right ) \,\text dx=\left \{ \begin{aligned} &\frac{\ell^2}{2}J^2_{p+1}(\chi_m) \; &n=m \\ &0 \quad &n\ne m \end{aligned}\right . $$
where we have
$$ J_p(\chi_n)=0 \qquad n\in \N^* $$
which corresponds to locating the zeros of the Bessel function $J_p$
Start with the wave equation
$$ \nabla^2\phi=\frac{1}{c^2}\frac{\partial^2\phi}{\partial t^2} $$
We use separation of variables $\phi=F(r,\theta)T(t)$
$$ \frac{1}{F}\nabla^2F=\frac{1}{C^2 T}\frac{\partial^2 T}{\partial t^2}=-k^2 $$
where $k^2>0$ is a constant to be determined
$$ \begin{aligned} \nabla^2F+k^2F&=0 \\ \frac{\partial^2 T}{\partial t^2}+k^2c^2T&=0 \end{aligned} $$
write the equation for $F$ in polar coordinates
$$ \frac{1}{r}\frac{\partial}{\partial r}\left ( r\frac{\partial F}{\partial r} \right ) + \frac{1}{r^2}\frac{\partial^2F}{\partial \theta^2}+k^2 F=0 $$
make another separation of variables $F(r,\theta)=R(r)\Theta(\theta)$
$$ \underbrace{\frac{r}{R}\frac{\text d}{\text dr} \left ( r\frac{\text dR}{\text dr} \right ) +k^2 r^2}{=n^2} +\underbrace{\frac{1}{\Theta}\frac{\text d^2 \Theta}{\text d \theta^2}}{-n^2}=0 $$
We can now solve
$$ \begin{aligned} \frac{1}{\Theta}\frac{\text d^2 \Theta}{\text d \theta^2}+n^2&=0 \quad \Theta=\left \{ \begin{matrix} \sin n\theta \\ \cos n\theta \end{matrix} \right . \\ \frac{r}{R}\frac{\text d R}{\text dr}\left ( r \frac{\text d R}{\text dr}\right )-n^2+k^2r^2&=0 \end{aligned} $$
🗒️ Note: we have the boundary condition $\Theta(\theta+2\pi n)=\Theta(\theta)$ so $n\in\Z$
We can rewrite the equation for $R$ as
$$ r\frac{\text d }{\text dr}\left ( r \frac{\text d R}{\text dr}\right )+(k^2r^2-n^2)=0 $$
Thus its solutions are
$$ R(r)=J_n(kr) $$
which are of the form
$$ \phi=J_n(kr)\left \{ \begin{matrix} \sin n\theta \sin kct \\ \sin n\theta \cos kct \\ \cos n\theta \sin kct \\ \cos n\theta \cos kct \end{matrix} \right . $$
If we apply the boundary condition that the circumference at $r=a$ is fixed then we have
$$ J_n(ka)=0 $$
and hence $k_{n,m}a=\chi_{n,m}$ is the $m$th root of the Bessel function $J_n(x)$. The angular frequency of the resonant modes is given by
$$ \omega_{n,m}=k_{n,m}c=\frac{\chi_{n,m}c}{a} $$
🗒️ Notes:
The lowest angular frequency of vibration, the fundamental mode ($\omega_0,1=\frac{\chi_{0,1}c}a\approx \frac{2.405c}{a}$) corresponds to the membrane vibrating as a whole with the peak in the center
The $(1,1)$ mode oscillates at an angular frequency $\omega_{1,1}=\frac{\chi{1,1}c}{a}\approx \frac{3.8317c}{a}$ and the node is located at $\cos(\phi)=0$ or $\phi=\pm \pi/2$
In principle there are doubly infinite set of characteristic frequencies or modes or vibration of the membrane
These frequencies of vibrations are not integral multiples or harmonics of the fundamental
Finally we can note that the solution is given by the doubly infinite sum