Angular momentum vector operator: $\hat {\bold L} = \hat {\bold r} \times \hat {\bold p}$ with commutations as follows
$$ [{\rm \hat L}_x, {\rm \hat L}_y]=i\hbar {\rm \hat L}_z \qquad [{\rm \hat L}_y,{\rm \hat L}_z]=i\hbar {\rm \hat L}_x \qquad [{\rm \hat L}_z,{\rm \hat L}_x]=i\hbar {\rm \hat L}_y \qquad [ \hat {\bold L}^2, \hat {\mathrm L}_i]=0 $$
where $\hat{\bold L}^2=\hat {\mathrm L}^2_x+ \hat {\mathrm L}^2_y+\hat {\mathrm L}^2_z$
⚙️ Properties:
- $\hat {\bold L}^2$ commutes with the Hamiltonian if the potential $V(r)$ is independent of angle
- Eigenfunctions of $\hat {\bold L}^2$ and $\rm \hat L_z$ are the spherical harmonic $Y_l^m(\theta ,\phi)$
- Eigenvalues for $\hat {\bold L}^2$ they are $\hbar ^2 l(l+1)$
- Where $l\in \N$
- Eigenvalues for $\rm \hat L_z$ they are $\hbar m$
- Where $m=-l,-l+1,\ldots ,l$
🗒️ Note: Here we will take a more general approach (ie coordinate independent) thus we will call the angular momentum vector operator $\hat {\bold J }$ with the same units as $\hbar$
💼 Case: consider the Hermitian operators $\rm \hat J_1, \hat J_2, \hat J_3$ components of $\hat {\bold J}$ where we know that there commutation relations are
$$ [{\rm \hat J}_1, {\rm \hat J}_2]=i\hbar {\rm \hat J}_3 \qquad [{\rm \hat J}_2,{\rm \hat J}_3]=i\hbar {\rm \hat J}_1 \qquad [{\rm \hat J}_3,{\rm \hat J}_1]=i\hbar {\rm \hat J}_2 $$
which we can write as $[{\rm \hat J}_i,{\rm \hat J}j]=i\hbar \sum_k \epsilon{ijk}{\rm \hat J}_k$
🗒️ Note: assumptions end and math begins here (ie the rest can be derived from the above)
Using the operator square $\hat{\bold J}^2=\hat {\mathrm J}^2_1+ \hat {\mathrm J}^2_2+\hat {\mathrm J}^2_3$ and the commutation relations we can show
$$ [ \hat {\bold J}^2, \hat {\mathrm J}_i]=0 $$
🗒️ Note: for convention we chose $i=3$ as the commuting operator
🥦 Eigenvector
We define the normalised states $|\lambda , \mu \rang$ such that
🗒️ Note: $\hbar^2$ and $\hbar$ are there so that $\mu$ and $\lambda$ are unitless
Using
we get the relation
$$ \boxed{|\mu| \le \sqrt{\lambda}} $$
🫁 Raising and lowering operators $\rm \hat J _\pm$
We define them as
$$ {\rm \hat J_+}\equiv {\rm \hat J}_1+i{\rm \hat J}2 \qquad {\rm \hat J}- \equiv {\rm \hat J}_1 -i {\rm \hat J}_2 $$
🗒️ Note: these are not Hermitian but ${\rm \hat J}-={\rm \hat J}+^\dag$
We can show that these follow the following commutations
$$ [{\rm \hat J}+,{\rm \hat J}-]=2\hbar {\rm \hat J}3 \qquad [{\rm \hat J}3,{\rm \hat J}+]=\hbar {\rm \hat J}+ \qquad [{\rm \hat J}3,{\rm \hat J}-]=-\hbar {\rm \hat J}- \qquad [\hat {\bold J}^2, {\rm \hat J}\pm ]=0 $$
🗒️ Note: since $\rm \hat J_\pm$ and $\hat {\bold J}^2$ commute, measuring one doesn't affect the result of the other
🥟 Action of raising and lowering operators on eigenstates
Defining define $\hat{\bold J}^2$ in terms of ${\rm \hat J}_\pm$
$$ \hat{\bold J}^2=\frac 12 ({\rm \hat J}+ {\rm \hat J}- + {\rm \hat J}- {\rm \hat J}+ )+ {\rm \hat J^2_3}={\rm \hat J}+{\rm \hat J}-+{\rm \hat J_3^2}-\hbar {\rm \hat J}3={\rm \hat J}- {\rm \hat J}_+ + {\rm \hat J^2_3}+\hbar {\rm \hat J}_3 $$
Considering the state $\rm \hat J_+|\lambda , \mu \rang$
$$ {\rm \hat J_3} ({\rm \hat J_+}|\lambda , \mu \rang ) = {\rm \hat J_+}{\rm \hat J}3|\lambda, \mu \rang + \hbar {\rm \hat J}+ |\lambda , \mu \rang = \hbar (\mu+1)({\rm \hat J_+}|\lambda , \mu \rang ) $$
🗒️ Note: either ${\rm \hat J_+} |\lambda,\mu \rang$ is an eigenstate of ${\rm \hat J}3$ with eigenvalue $\hbar (\mu+1)$ or =$| 0\rang$ and similarly for ${\rm \hat J-} |\lambda,\mu \rang$ with eigenvalue $\hbar (\mu -1)$