$$ \vec r'(t)=\vec r(t)-\vec R(t) $$
$$ \vec{a}'=\vec{a}-\vec{A} $$
where $\vec{A}=\ddot{\vec{R}}$
$$ \vec F'=\vec F-m\vec A= m \vec a' $$
$$ \begin{aligned} x&=r\sin\theta\cos\phi \\ y&=r\sin\theta\sin\phi \\ z&=r\cos\theta \end{aligned} $$
$$ \begin{aligned} r&=\sqrt{x^2+y^2+z^2} \\ \theta&=\cos^{-1}\left(\frac{z}{r}\right) \\ \phi&=\tan^-1\left(\frac{y}{x}\right) \end{aligned} $$
https://www.math3d.org/CQHUnA6rD
$$ \begin{aligned} \vec e_r&=\sin\theta\,[\cos(\phi)\,\vec e_x+\sin(\phi)\,\vec{e}_y]+\cos(\theta)\,\vec{e}z \\ \vec e\theta &=\cos\theta\,[\cos(\phi)\,\vec{e}_x+\sin(\phi)\,\vec{e}_y]-\sin(\theta)\,\vec{e}z \\ \vec e\phi&=-\sin(\phi)\,\vec{e}_x+\cos(\phi)\,\vec{e}_y \end{aligned} $$
$$ \begin{aligned} \vec{e}x&=\cos\phi\,[\sin(\theta)\,\vec e_r+\cos(\theta)\,\vec e\theta]-\sin(\phi)\,\vec{e}\phi \\ \vec e_y&=\sin\phi\,[\sin(\theta)\,\vec e_r+\cos(\theta)\,\vec e\theta]+\cos(\phi)\,\vec{e}_\phi \\ \vec{e}z&=\cos(\theta)\,\vec e_r-\sin(\theta)\,\vec e\theta \end{aligned} $$
$$ \begin{aligned} \dot {\vec e_r}&=\dot \theta \vec e_\theta+\dot \phi\sin(\theta)\,\vec e_\phi \\ \dot {\vec e_\theta}&=-\dot \theta \vec e_r+\dot \phi\cos(\theta)\,\vec e_\phi \\ \dot {\vec e_\phi}&=-\dot \phi\,[\sin(\theta)\, \vec e_r+\cos(\theta)\,\vec e_\theta] \end{aligned} $$
$$ \vec{\omega}=\dot \theta \vec e_\phi + \dot \phi \vec e_z=\dot \phi\,[\cos(\theta)\,\vec e_r-\sin(\theta)\,\vec e_\theta]+\dot \theta\, \vec e_\phi $$
which can be written as $\vec\omega=\omega_k'\vec e'_k$ where $\omega_1'=\dot \phi \cos\theta$, $\omega_2'=-\dot \phi \sin \theta$ and $\omega_3'=\dot \theta$
$$ \vec\omega\times\vec e_r= \begin{vmatrix} \vec e_r & \vec e_\theta & \vec e_\phi \\ \dot \phi \cos \theta & -\dot \phi\sin\theta & \dot \theta \\ 1 & 0 &0 \end{vmatrix}=\dot \theta\vec e_\theta+\dot\phi\sin(\theta)\,\vec e_\phi=\dot{\vec e_r} $$
$$ \dot{\vec e_i'}=\vec\omega\times\vec e_i'=\omega'_k(\vec e'_k\times\vec e'i)=\epsilon{ijk}\vec e'_j \omega'_k $$
$$ \frac{\text{d}\vec{A}}{\text{d}t}=\dot A_i\vec e_i=\dot A'_j\vec e_j'+A'_j\dot{ \vec e_j'}=\dot{A}'_j\vec e'_j+A_j'(\vec \omega\times\vec e'_j) $$
$$ \dot{\vec A}|S=\dot{\vec A}|{S'}+\vec\omega\times\vec A $$