Wave equation

Dโ€™Alembertian

$$ \partial _\mu \partial ^\mu = \frac{1}{c^2}\frac{\partial ^2}{\partial t^2} -\nabla^2 = \square^2 $$

๐Ÿ—’๏ธ Note: since $\square^2$ is a product of covariant and contravariant it is Lorentz invariant

Wave equation

๐Ÿง  Remember: we have the following wave equations

$$ \begin{aligned} \square ^2 \left ( \frac{V}{c} \right )&=\frac{\rho}{c\epsilon_0} = \mu_0 (\rho c) \\ \square ^2 \vec A&= \mu_0 \vec j

\end{aligned} $$

Thus we define the potential 4-vector $A^\mu$

$$ A^\mu \equiv \left ( \frac{V}{c}, \vec A \right ) $$

๐Ÿ—’๏ธ Note: $\square^2,\mu_0,j^\mu$ are Lorentz invariant, constants or 4-vector meaning that $A^\mu$ is a 4-vector

โš™๏ธ Properties:

Lorenz Gauge condition

๐Ÿง  Remember: the Lorenz gauge condition

$$ \frac{1}{c} \frac{\partial }{\partial t} \left [ \frac{V}{c} \right ]+ \vec \nabla \cdot \vec A = 0 $$

๐Ÿ—’๏ธ Notes: